Benha University

Faculty Of Engineering at Shoubra

ECE 122

Electrical Circuits $(2)(2016 / 2017)$ Lecture (12)

Dr. Moataz Hsherbini

motaz.ali@feng.bu.edu.eg

WHY WE STUDY 3 PHASE SYSTEM ?

- ALL electric power system in the world used 3-phase system to GENERATE, TRANSMIT and DISTRIBUTE
\checkmark One phase, two phase, or three phase can be taken from three phase system rather than generated independently.
- Instantaneous power is constant (not pulsating).- thus smoother rotation of electrical machines
\checkmark High power motors prefer a steady torque
- More economical than single phase - less wire for the same power transfer
\checkmark The amount of wire required for a three phase system is less than required for an equivalent single phase system.

Single ${ }_{d}$ phase generator

Generator for single phase

Note

Induction motor cannot start by itself. This problem is solved by introducing three phase system

Current induces in the coil as the coil moves in the magnetic field

Current produced at terminal

Three phase generator

Raj. 13.6 Penjanaza d.g.e. tigafas.

Instead of using one coil only, three coils are used arranged in one axis with orientation of 120° each other. The coils are $\mathrm{R}-\mathrm{R}_{1}, \mathrm{Y}-\mathrm{Y}_{1}$ and $B-B_{1}$. The phases are measured in this sequence R-Y-B. I.e Y lags R by 120°, B lags Y by 120°.

Phase 2 lags phase 1 by 120°. Phase 3 lags phase 1 by 240°.

Phase 2 leads phase 3 by 120°. Phase 1 leads phase 3 by 240°.

The three winding can be represented by the above circuit. In this case we have six wires. The emf are represented by e_{R}, e_{V}, e_{B}.

$$
\begin{aligned}
& e_{\mathrm{R}}=\mathrm{E}_{\mathrm{m}} \sin \omega t \\
& e_{\mathrm{Y}}=\mathrm{E}_{\mathrm{m}} \sin \left(\omega t-120^{\circ}\right) \\
& e_{\mathrm{B}}=\mathrm{E}_{\mathrm{m}} \sin \left(\omega t-240^{\circ}\right)
\end{aligned}
$$

The circuit can be simplified as follows, where R_{1} can be connected to Y and Y_{1} can be connected to B . In this case the circuit is reduced to 4 wires.

$$
\begin{aligned}
& e_{\mathrm{RB} 1}=e_{\mathrm{R}}+e_{\mathrm{Y}}+e_{\mathrm{B}} \\
& =\mathrm{E}_{\mathrm{m}}\left[\sin \omega t+\sin \left(\omega t-120^{\circ}\right)+\sin \left(\omega t-240^{\circ}\right)\right] \\
& =E_{m}\left[\sin \omega \mathrm{t}+\sin \omega \mathrm{t} \cdot \cos 120^{\circ}-\cos \omega \mathrm{t} \cdot \sin 120^{\circ}\right. \\
& \left.\quad+\sin \omega \mathrm{t} \cdot \cos 240^{\circ}-\cos \omega \mathrm{t} \cdot \sin 240^{\circ}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { Finish } \\
& \text { start } \\
& \text { Finish } \\
& \text { start } \\
& \text { Finish } \\
& P_{1} \\
& \text { start }
\end{aligned}
$$

$$
=E_{m}[\sin \omega \mathrm{t}-0.5 \sin \omega \mathrm{t}-0.866 \cos \omega \mathrm{t}-0.5 \sin \omega \mathrm{t}+0.866 \text { kos } \omega \mathrm{t}]
$$

$$
=0
$$

Since the total emf is zero, R and B_{1} can be connected together, thus we arrive with delta connection system.

Delta connection of three phase windings

Fig.A

Fig. B

Fig. C

Since the total emf is zero, R and B_{1} can be connected together as in Fig.A, thus we arrive with delta connection system as in Fig. C. e $_{\text {er }}$ The direction of the emf can be referred to the e_{R} emf waveform as in Fig. B where PL is $+\mathrm{ve}\left(\mathrm{R}_{1-}\right.$ R), $P M$ is $-\mathrm{ve}\left(Y-Y_{1}\right)$ and $P N$ is $-\mathrm{ve}\left(B-B_{1}\right)$.

Star connection of three phase windings

$\mathrm{R}_{1}, \mathrm{Y}_{1}$ and B_{1} are connected together.${ }^{\bullet}$ As the e.m.f generated are assumed in \cdot positive direction, therefore the current directions are also considered as flowing in the positive direction. The current in the common wire (MN) • is equal to the sum of the generated currents. i.e $i_{\mathrm{R}}+i_{\mathrm{Y}}+i_{\mathrm{B}}$. This arrangement is called four -wire \cdot star-connected system. The point N refers to star point or neutral point.

The instantaneous current in loads $\mathrm{L}_{1}, \mathrm{~L}_{2}$ and L_{3} are

$$
\mathrm{i}_{R}=I_{m} \sin \omega \mathrm{t}
$$

$$
\mathrm{i}_{Y}=I_{m} \sin \left(\omega \mathrm{t}-120^{\circ}\right)
$$

$$
\mathrm{i}_{B}=I_{m} \sin \left(\omega \mathrm{t}-240^{\circ}\right)
$$

$$
\mathrm{i}_{N}=\mathrm{i}_{R}+\mathrm{i}_{Y}+\mathrm{i}_{B}
$$

$$
=I_{m}\left[\sin \omega \mathrm{t}+\sin \left(\omega \mathrm{t}-120^{\circ}\right)\right.
$$

$$
\left.+\sin \left(\omega t-240^{\circ}\right)\right]=0
$$

For balanced loads, the fourth wire carries no current, so it can be dispensed

Three-wire star-connected system with రลlanced load

Instantaneous currents' waveform for $i_{\mathrm{R}}, i_{\mathrm{Y}}$ and i_{B} in a balanced three-phase system.

Voltage and current in star connection

$\mathrm{V}_{\mathrm{RY}}, \mathrm{V}_{\mathrm{YB}}$ and V_{BR} are called line voltage• V_{R}, V_{Y} and V_{B} are called phase voltage

From Kirchoff voltage law we have

$$
\begin{aligned}
& V_{R Y}=V_{R}-V_{Y}=V_{R}+\left(-V_{Y}\right) \\
& V_{Y B}=V_{Y}-V_{B}=V_{Y}+\left(-V_{B}\right) \\
& V_{B R}=V_{B}-V_{R}=V_{B}+\left(-V_{R}\right)
\end{aligned}
$$

In phasor diagram

For balanced load $\mathrm{V}_{\mathrm{R}}, \mathrm{V}_{\mathrm{Y}}$ and
V_{B} are equaled but out of phase

$$
\begin{array}{rr}
\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{P}} \angle 30^{\circ} ; & \mathrm{V}_{\mathrm{RY}}=\mathrm{V}_{\mathrm{L}} \angle 30^{\circ} ; \\
\mathrm{V}_{\mathrm{Y}}=\mathrm{V}_{\mathrm{P}} \angle-90^{\circ} ; & \mathrm{V}_{\mathrm{YB}}=\mathrm{V}_{\mathrm{L}} \angle-90^{\circ} ; \\
\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{P}} \angle 150^{\circ} ; & \mathrm{V}_{\mathrm{BR}}=\mathrm{V}_{\mathrm{L}} \angle 150^{\circ} ;
\end{array}
$$

therefore

$$
\begin{aligned}
& V_{R Y}=2 V_{R} \cos 30^{\circ}=(\sqrt{3}) V_{P} \\
& V_{B R}=2 V_{B} \cos 30^{\circ}=(\sqrt{3}) V_{P} \\
& V_{Y B}=2 V_{Y} \cos 30^{\circ}=(\sqrt{3}) V_{P}
\end{aligned}
$$

then

15

Voltage and current in Delta connection

$\mathrm{I}_{\mathrm{R}}, \mathrm{I}_{\mathrm{Y}}$ and I_{B} are called line current• $\mathrm{I}_{1}, \mathrm{I}_{2}$ and I_{3} are called phase current \cdot From Kirchoff current law we have I_{3}

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{R}}=\mathrm{I}_{1}-\mathrm{I}_{3}=I_{1}+\left(-I_{3}\right) \\
& \mathrm{I}_{\mathrm{Y}}=\mathrm{I}_{2}-\mathrm{I}_{1}=I_{2}+\left(-I_{1}\right) \\
& \mathrm{I}_{\mathrm{B}}=\mathrm{I}_{3}-\mathrm{I}_{2}=I_{3}+\left(-I_{2}\right)
\end{aligned}
$$

In phasor diagram

Since the loads are balanced, the magnitude of currents are equaled but 120 o out of phase. i.e $\mathrm{I}_{1}=\mathrm{I}_{2}=\mathrm{I}_{3},=\mathrm{I}_{\mathrm{P}}$ Therefore:-

$$
\begin{array}{rr}
\mathrm{I}_{\mathrm{R}}=\mathrm{I}_{\mathrm{L}} \angle 30^{\circ} ; & \mathrm{I}_{1}=\mathrm{V}_{\mathrm{P}} \angle 30^{\circ} ; \\
\mathrm{I}_{\mathrm{Y}}=\mathrm{I}_{\mathrm{L}} \angle-90^{\circ} ; & \mathrm{I}_{2}=\mathrm{V}_{\mathrm{P}} \angle-90^{\circ} ; \\
\mathrm{I}_{\mathrm{B}}=\mathrm{I}_{\mathrm{L}} \angle 150^{\circ} ; & \mathrm{I}_{3}=\mathrm{V}_{\mathrm{P}} \angle 150^{\circ} ;
\end{array}
$$

Where I_{p} is a phase current and I_{L} is a line current

$$
I_{R}=2 I_{1} \cos 30^{\circ}=(\sqrt{3}) I_{P}
$$

$$
I_{Y}=2 I_{2} \cos 30^{\circ}=(\sqrt{3}) I_{P}
$$

$$
I_{B}=2 I_{3} \cos 30^{\circ}=(\sqrt{3}) I_{P}
$$

Thus $I_{R}=I_{Y}=I_{B}=I_{L}$

Hence

18

Unbalanced load Example 1

In a three-phase four-wire system the line voltage is 400 V and non-inductive loads of $5 \mathrm{~kW}, 8 \mathrm{~kW}$ and 10 kW are connected between the three conductors and the neutral. Calculate: (a) the current in each phase
(b) the current in the neutral conductor.

Voltage to neutral $\quad V_{P}=\frac{V_{L}}{\sqrt{3}}=\frac{400}{\sqrt{3}}=230 \mathrm{~V}$
Current in 10 kW resistor $\quad I_{R}=\frac{P_{R}}{V_{P}}=\frac{10^{4}}{230}=43.5 \mathrm{~A}$
Current in 8 kW resistor $\quad I_{Y}=\frac{P_{Y}}{V_{P}}=\frac{8 \times 10^{3}}{230}=34.8 \mathrm{~A}$

Current in 5 kW resistor

$$
I_{B}=\frac{P_{B}}{V_{P}}=\frac{5 \times 10^{3}}{230}=21.7 \mathrm{~A}
$$

Resolve the current components into horizontal and vertical components.

$$
\begin{aligned}
& I_{H}=I_{Y} \cos 30^{\circ}-I_{B} \cos 30^{\circ}=0.866(34.8-21.7)=11.3 \mathrm{~A} \\
& I_{V}=I_{R}-I_{Y} \cos 60^{\circ}-I_{B} \cos 60^{\circ}=43.5-0.5(34.8+21.7)=13.0 \mathrm{~A} \\
& I_{N}=\sqrt{I_{N H}^{2}+I_{N V}^{2}}=\sqrt{11.3^{2}+13.0^{2}}=17.2 \mathrm{~A}
\end{aligned}
$$

Example 2

A delta - connected load is arranged as in Figure below. The supply voltage is 400 V at 50 Hz . Calculate:
(a)The phase currents;
(b)The line currents.

(a)

$$
I_{1}=\frac{V_{R Y}}{R_{1}}=\frac{400}{100}=4 \mathrm{~A}
$$

I_{1} is in phase with V_{RY} since there is only resistor in the branch

In branch between YB , there are two components, R_{2} and X_{2}

$$
\begin{aligned}
& I_{2}=\frac{V_{Y B}}{Z_{Y}}=\frac{400}{\sqrt{20^{2}+60^{2}}}=6.32 \mathrm{~A} \\
& \mathrm{Z}_{\mathrm{Y}}=\sqrt{\mathrm{R}_{2}{ }^{2}+\mathrm{X}_{2}{ }^{2}} \quad=\sqrt{20^{2}+60^{2}} \\
& \theta_{\mathrm{Y}}=\tan ^{-1}\left(\frac{\mathrm{X}_{2}}{\mathrm{R}_{2}}\right)=\tan ^{-1}\left(\frac{60}{20}\right)=71^{\circ} 34^{\prime}
\end{aligned}
$$

In the branch RB , only capacitor in it, so the X_{C} is -90 out of phase.
$I_{3}=\frac{V_{B R}}{X_{C}} \quad=\frac{400}{1 /\left(2 \pi \times 50 \times 30 \times 10^{-6}\right) \angle-90^{\circ}}$

$$
=3.77 \mathrm{~A} \angle 90^{\circ}
$$

(b) $\quad \mathrm{I}_{\mathrm{R}}=\mathrm{I}_{1}-\mathrm{I}_{3}$

$$
\begin{aligned}
I_{R}^{2} & =I_{1}^{2}+2 I_{1} I_{3} \cos \theta+I_{3}^{2} \\
I_{R}^{2}= & (4.0)^{2}+2(4.0)(3.77) \cos 30^{\circ}+(3.77)^{2}=56.3 \\
I_{R}= & 7.5 \mathrm{~A} \\
& \theta=71^{\circ} 34^{\prime}-60^{\circ}=11^{\circ} 34^{\prime} \\
\mathrm{I}_{\mathrm{Y}} & =\mathrm{I}_{2}-\mathrm{I}_{1} \\
I_{Y}^{2}= & I_{2}^{2}+2 I_{1} I_{2} \cos \theta+I_{1}^{2} \\
I_{Y}^{2} & =(6.32)^{2}+2(4.0)(6.32) \cos 11^{\circ} 34^{\prime}+(4.0)^{2}=105.5 \\
I_{Y} & =10.3 \mathrm{~A}
\end{aligned}
$$

$$
\begin{aligned}
& \theta=180-30^{\circ}-11^{\circ} 34^{\prime}=138^{\circ} 34^{\prime} \\
& \mathrm{I}_{\mathrm{B}}=\mathrm{I}_{3}-\mathrm{I}_{2} \\
& I_{B}^{2}=I_{3}^{2}+2 I_{3} I_{2} \cos \theta+I_{2}^{2} \\
& I_{B}^{2}=(6.32)^{2}+2(3.77)(6.32) \cos 138^{\circ} 26^{\prime}+(3.77)^{2}=18.5 \\
& I_{B}=4.3 A
\end{aligned}
$$

Power in three phase

Active power per phase $=I_{P} V_{P} \times$ power factor Total active power $=3 V_{P} I_{P} \times$ power factor

$$
P=3 V_{P} I_{P} \cos \varphi
$$

If I_{L} and V_{L} are rms values for line current and line voltage respectively. Then for delta (Δ) connection: $V_{P}=V_{L}$ and I_{P} $=I_{L} / \sqrt{ } 3$. therefore:

$$
P=\sqrt{3} V_{L} I_{L} \cos \varphi
$$

For star connection (Y) : $V_{P}=V_{L} / \sqrt{ } 3$ and $I_{P}=I_{L}$. therefore:

$$
P=\sqrt{3} V_{L} I_{L} \cos \varphi
$$

Example 3

A three-phase motor operating off a 400 V system is developing 20 kW at an efficiency of $0.87 \mathrm{p} . \mathrm{u}$ and a power factor of 0.82 . Calculate:
(a)The line current;
(b)The phase current if the windings are delta-connected.
(a) Since Efficiency $=\frac{\text { output power in watts }}{\text { input power in watts }}$

$$
\eta=\frac{\text { output power in watts }}{\sqrt{3} I_{L} V_{L} \times p . f}
$$

$$
0.87=\frac{20 \times 1000}{\sqrt{3} \times I_{L} \times 400 \times 0.82}
$$

And line current $=\mathrm{I}_{\mathrm{L}}=40.0 \mathrm{~A}$
(b) For a delta-connected winding

$$
\text { Phase current }=\frac{\text { line current }}{\sqrt{3}}=\frac{40.0}{\sqrt{3}}=23.1 \mathrm{~A}
$$

Example 4

Three identical coils, each having a resistance of 20Ω and an inductance of 0.5 H connected in (a) star and (b) delta to a three phase supply of 400 V ; 50 Hz . Calculate the current and the total power absorbed by both method of connections.

First of all calculating the impedance of the coils

$$
\begin{aligned}
\mathrm{R}_{\mathrm{P}} & =20 \Omega \quad \mathrm{X}_{\mathrm{P}}=2 \pi \times 50 \times 0.5=157 \Omega \\
Z_{P} & =R_{P}+j X_{P}=\sqrt{R_{P}^{2}+X_{P}^{2}} \angle \varphi \quad \text { where } \varphi=\tan ^{-1}\left(\frac{\mathrm{X}_{\mathrm{P}}}{\mathrm{R}_{\mathrm{P}}}\right) \\
& =\sqrt{20^{2}+157^{2}} \angle \tan ^{-1}\left(\frac{157}{20}\right)=158 \angle 83^{\circ}
\end{aligned}
$$

$$
\cos \varphi=\cos 83^{\circ}=0.1264
$$

Star-connection

Since it is a balanced load

$$
\mathrm{V}_{\mathrm{P}}=\frac{400}{\sqrt{3}}=231 \mathrm{~V} \quad \mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{L}}=\frac{\mathrm{V}_{\mathrm{P}}}{\mathrm{Z}_{\mathrm{P}}}=\frac{231}{158}=1.46 \mathrm{~A}
$$

Power absorbed

$$
P=\sqrt{3} V_{L} I_{L} \cos \varphi=\sqrt{3} \times 400 \times 1.46 \times 0.1264=128 \mathrm{~W}
$$

Star connection

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{P}}=\mathrm{V}_{\mathrm{L}}=400 \mathrm{~V} \quad \mathrm{I}_{\mathrm{P}}=\frac{\mathrm{V}_{\mathrm{P}}}{\mathrm{Z}_{\mathrm{P}}}=\frac{400}{158}=4.38 \mathrm{~A} \\
& P=\sqrt{3} V_{L} I_{L} \cos \varphi=\sqrt{3} \times 400 \times 4.38 \times 0.1264=383 \mathrm{~W}
\end{aligned}
$$

Example 5

A balanced three phase load connected in star, each phase consists of resistance of 100Ω paralleled with a capacitance of $31.8 \mu \mathrm{~F}$. The load is connected to a three phase supply of $415 \mathrm{~V} ; 50 \mathrm{~Hz}$.
Calculate:
(a) the line current;
(b) the power absorbed;
(c) total kVA ;
(d) power factor

$$
\mathrm{V}_{\mathrm{P}}=\frac{\mathrm{V}_{\mathrm{L}}}{\sqrt{3}}=\frac{415}{\sqrt{3}}=240 \mathrm{~V}
$$

31

Admittance of the load

$$
\begin{aligned}
Y_{P} & =\frac{1}{R_{P}}+\frac{1}{X_{P}} \quad \text { where } \quad X_{P}=\frac{1}{j \omega C} \\
& =\frac{1}{R_{P}}+j \omega C=\frac{1}{100}+j 2 \pi \times 50 \times 31.8 \times 10^{-6}=(0.01+j 0.01) S
\end{aligned}
$$

Line current

$$
I_{L}=I_{P}=V_{P} Y_{P}=240(0.01+j 0.01)=2.4+j 2.4=3.39 \angle 45^{\circ}
$$

Volt-ampere per phase

$$
\mathrm{P}_{\mathrm{VA}}=\mathrm{V}_{\mathrm{P}} \mathrm{I}_{\mathrm{P}} \quad=240 \times 3.39 \angle 45^{\circ}=814.4 \angle 45^{\circ}
$$

Active power per phase $\quad P_{P A}=814.4 \cos 45^{\circ}=576$
Total active power

$$
P_{A}=3 \times 576=1.728 \mathrm{~kW}
$$

(b)

Reactive power per phase $P_{P R}=j 814.4 \sin 45^{\circ}=j 576$
Total reactive power

$$
P_{R}=j 3 \times 576=j 1.728 k W
$$

(c) Total volt-ampere $=3 \times 814.4=2.44 \mathrm{kVA}$
(d) Power Factor $=\cos \varphi=\cos 45^{\circ}=0.707$ (leading)

Example 6

A three phase star-connected system having a phase voltage of 230 V and loads consist of non reactive resistance of $4 \Omega, 5 \Omega$ and 6Ω respectively.
Calculate:(a) the current in each phase conductor
(b) the current in neutral conductor
and (c) total power absorbed.

$$
\begin{aligned}
& \mathrm{I}_{4 \Omega}=\frac{230}{4}=57.5 \mathrm{~A} \\
& \mathrm{I}_{5 \Omega}=\frac{230}{5}=46 \mathrm{~A} \\
& \mathrm{I}_{6 \Omega}=\frac{230}{6}=38.3 \mathrm{~A}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \text { X-component }=46 \cos 30^{\circ}+38.3 \cos 30^{\circ}-57.5=15.5 \mathrm{~A} \\
& \mathrm{Y}-\operatorname{component}=46 \sin 30^{\circ}-38.3 \sin 30^{\circ}=3.9 \mathrm{~A}
\end{aligned}
$$

Therefore

$$
\mathrm{I}_{\mathrm{N}}=\sqrt{15.5^{2}+3.9^{2}}=16 \mathrm{~A}
$$

$$
\begin{equation*}
\mathrm{P}=230(57.5+46+38.3)=32.61 \mathrm{~kW} \tag{c}
\end{equation*}
$$

